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FOREWORD

This report was prepared under Air Force
Contract No. AF 08(C35)542, Project 3811, (U)
"Lenticular Rocket." The work was administered
under the direction of Weapons Laboratory, Air
Proving Ground Center, Eglin Air Force Base,
Florida.

This document, except the title, is classified
SECRET in accordance with AFR 255-1, paragraph
30b, because of the nature and potential military
application of the research work and data described
herein.
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ABSTRACT

A series of studies was conducted to deiermine
design feasibility of lenticular rockets as airborne
weapons. Detailed studies were conducted in the
areas of acrodynamics (including wind tuiinel tests),
acrodynamic heating, propulsion, conirol systems,
structures, and missile performance. Limited guid-
ance and launch studies were conducted. Results of
this brogram showed significant advantages for the
lenticular configuration, compared to conventional
missiles, particularly as related to omnidirectional
launch and high maneuver capability.

Nominal vehicle configurations were determined,
based on the parametric data generated, and design
feasibility layouts with supporting data are shownfor
these configurations. Design scaling information
was determined for preliminary weight and perform-
ance estimates of various-size PYE WACKET mis-
siles. Recommendations are made with regard to the
direction future programs should take to: (1) prove
out stabhility, contrel, and omnidirectional launch
capability with flight test vehicles, (2) evaluate over-
all system problems including launch platform, and
(3) initiate prototype engineering work.
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Section 1

INTRODUCTION

A general aerodynamic evaluation and a vehicle feasibility design study
was conducted to determine the overall technical feasibility of the lenticular
cross section, circular planform configuration as a potentially significant
advance in airborne weaponry.

The lenticular cross section, circular planform concept originated with
the Technical Planning Group of the Air Proving Ground Center, Air Research
and Development Command, Eglin Air Force Base, Florida. This group con-
ducted a preliminary in-house study on the feasibilily of lenticular rockets.
Parameters for a lenticular cross section, circular planform configuration
were chosen and feasibility calculations were made. Data obtained from these
theoretical analyses indicated a possibility for advanced missile applications
for both offensive and defensive roles.

The efforts of the Technical Planning Group were furthered by an experi-
mental program conducted in Tunnel E-1 of the Gas Dynamics Facility, Arnold
Engineering Development Center. Two configurations of a proposed lenticular
munition were considered. The results of this experimental program, contained
in Reference 1.1, indicated that a circular planform configuration can offer an
efficient airframe of low drag and high maneuver capability.

As a result of this effort a request for proposal (Reference 1.2) was issued
by the Directorate of Procurement of the Air Proving Ground Center. This re-
quest concerned a study program whose purpose was to evaluate the technical
feasibility of the lenticular configuration as a potentially significant advance in
airborne weaponry. Particular emphasis was placed on the determination of
the characteristics of the circular planform as pertains to flight characteristics,
stability, contrel, and maneuverability. A further objective of the study was
to establish the design feasibility of the configuration as a potential airborne
weapon. The unclassified code name "PYE WACKET" was assigned to the
study.

A technical proposal was submitted by Convair-Pomona, among others, in
answer to the APGC request (Reference 1.3); a contract entitled, "Lenticular
Rocket," AF08(635)-542, was awarded to Convair-Pomona in June of 1959,

This report summarizes the results of a 6—month stuly conducted under
the direction of the Weapons Laboratory to: (1) evaluate the configuration,
aerodynamically, and (2) establish design feasibility for airborne weapon ap-
plications. The report-submitted as a requirement of the contract-is divided
into three primary sections, namely, Configuration Evoluation, Design Feasi-
bility Studies, and Recommendations.
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The Configuration Evaluation is contained in Section 2. Here the cross-
section is established and the planform is evaluated; comparisons of the PYE
WACKET configuration are then made with conventional bodies with respect to
maneuver capability, drag, and airframe efficiency. Advantages and problem .
areas are evaluated. In addition, potential applications of the configuration to
airborne weapons are outlined.

The Design Feasibility Studies are contained in Section 3. These studies
include investigztion of the major design areas necessary for feasibility evalua-
tio.., i.e., propulsion, structure, aerodynamic heating, guidance, etc. In ad-
dition, the most promising aercdynamic configuration and the required control
system were determined. . This scction also mcludeb "design feasibility" layouts
of nominal PYE WACKLT configurations.

Recommendations are pre;entcd in Section.4. This sectlon con51ders the
effort requu ed to design and fly feasﬂnht; test vehicles as well as the scope of -

the work 1eqLu1 ed to produce tne prototy ype flight x° chieles of a mgh_peyformance
air- to -air, m15511e ’ S0 e

1.1 U$FOF?E®ERENCES i S
1.1.. Techmcql lemnv Gloup, .D‘lectomtc -of. De\ elopment Alr Provmg _'
Ground Centu I:grlm Air Force Base; Flor 1da “E\perlmen’sa.l and
Theor etlcal Inv est1gdt,ons on Lenticular Rocket Shapes.'" . .
1.2. Directorate of Procurement; Air Proving Ground Center, United : .
) States An Force, Eglin Air Force Base, Flouda, ”Request for Pro- °
')osai Pu; chase Request PGE‘\I 59-116; Lentlcular Rocket (U)," ' '
o 23 \Iarch 1939. 5 °
1.3. Convair- Po'nona CPE- 1393 "Pronosﬂ for Lentmular Rocket Fea$1- ;
bility ‘Study, " April 1959. e : .
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Section 2
CONFIGURATION EYALUATION

As discussed in Section 1, the first of the two major objectives- of this study
was to establish the aerodynamic feasibility of circular planform, lenticular
cross section configurations. In particular, the advantages and shortcomings of
the PYE WACKET concept were to be examined with reference to conventional
configurations. ‘ : .

In makmfr thé evaluation, acr od\ nanic fund-amentqls ha\ ¢ been emphasized.
Where. design-type information must be br ourfht into the discussion for clar1tv
reference is made to Sectxon 3:

.1 SELEC FIO\ OF CROSS SECTION

The first step in the ael“od\ namlc ev qluﬂ.tlon of cu‘cul'ir p‘anfm m bodies was

' fo determine which of the'lerticular. CI‘O.C: ‘sections had the best combination of

Lll'll'lCtCllSthS particularly-lift effectl\entss, aerod}hamlc crnmencx . and
long1tud1na1. stability. - A stallcd tréatnient of this' selecdo*l priocess is. plcsented

©in subseetidn@i,?._ 'Bmeﬂ_\', thé initial évaluatien of CO'I]Il”‘UIaUO’IS utilized theo-

retical technii;ueé and availahle wind tu”ml mformatmn This initial effort
resulted’in three. configurations that w ele fur ther inv estmated e\penmentally

“Sketches of (hese confwuratlons showing planfor*n and side views are shown in

. mee L10L. . .
' The three confl fux ations shown are: o,
1. ;\LOdCl 1° - symmetrical lenticular cross sectlon
T e Model T - intermédiate cross section w1th the planfmm contour circles

. tangent to the aft edge
3. Model 111 -." modificd tangent contours’

Model .II (frequently called “blunted lenticular” config.ulration in the text) wa's

~predicted to have the best aerodynamic characteristics as well as the' most desir-
“able volume distribution for the packagzing of a propulsion system.

Some of the resul s of wind tunnel testing are summarized in Figures 2.1.2,
2.1. 3, and 2 Figure.2.1.2 presents plots of lift curve slope, CLa’ versus
Mach numbex for the three cross sections considered. Model IIT is shown to

SECRET 2.1.1
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rovide the greatest lift effectiven over the entire test Mach number range.
le the greatest lift effectiveness the ent test Mact b gC
Figure 2.1.3 presents plots of zero-lift drag CDo’ versus Mach number and

S0
indicates that Models II and III have identical draz curves that are considerably
. below the drag curve of NModel 1. Figure 2.1.4 presents plots of center of pres-

sure location with reference to the midehord of the circular planform as a func-
tion of AMach number. Model III is shown to have the farthest aft center of pres-
sure location at all Mach numbers.

Prior to proceecding further, some qualifyving comments are required con-
cerning the relative stability of Models I and III. Purely on an aerodynamic basis,
JModel IIT is more stable than either Models I or I because the center of pressure
and center of gravity location. For example. the centroids (equivalent to uniform
density in an actual vehicle) of Model T and Madel III are at the midehord and 9
percent aft of the midchord, respectivelv. If the centroids were representative
of center of gravity locations, Models I and 11 would have sinm‘lar longitudinal
stability characteristics. Since center of gravity position is dependent on the
design lavout of internal components, further discussion of stability margins is
deferred until Section 3. It should be mentioned, however, that design feasibility
lavouts of the blunted lenticular PYE WACKET configuration for missile applica-
tions demonstrate acceptable center of gravity locations.

WA
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2.2 PLANFORMN EVAILIUATION

In attempting to acrodynamically optimize the PYE WACKET configuration,
it was considered desirable to check the relative effectiveness of the circular
planform with those of other geometries. Adhering to fundamental aerodynamic
concepts, the effects of planform geometry can be compared in terms of thin flat
plates. Experimental data obtained from Reference 2.2.1 provide bases for the
comparison of three elementary geometries - circle, square, and triangle.

6.3%) and indicate the varation of lift and drag coefficients, and the lift-to-drag
ratio as functions of angle of attack. Although these plots lack data for the cir-
cular planform below an anzgle of 457 the trends indicate that, in the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>